SI PREFIXES

P	Peta	10^{15}
T	Tera	10^{12}
G	Giga	10^{9}
M	Mega	10^{6}
k	kilo	10^{3}
h	hecto	10^{2}
da	deka	10^{1}
d	deci	10^{-1}
c	centi	10^{-2}
m	milli	10^{-3}
$\mathrm{\mu}$	micro	10^{-6}
n	nano	10^{-9}
p	pico	10^{-12}
f	femto	10^{-15}

LINEAR MOTION:

$$
\begin{aligned}
& v=\frac{\Delta d}{\Delta t} \\
& v_{a v e}=\left(\frac{v_{f}+v_{i}}{2}\right) \\
& a=\frac{\Delta v}{\Delta t}=\frac{\left(v_{f}-v_{i}\right)}{\Delta t} \\
& v_{f}=v_{i}+a t \\
& \Delta d=\left(\frac{v_{f}+v_{i}}{2}\right) t
\end{aligned}
$$

$$
\Delta d=v_{i} t+\frac{1}{2} a t^{2}
$$

$$
v_{f}^{2}=v_{i}^{2}+2 a \Delta d
$$

$$
\Delta d=v_{f} t-\frac{1}{2} a t^{2}
$$

WORK, POWER AND ENERGY:

$$
W=F d \cos (\theta)
$$

$P=\frac{W}{t}=F \cdot v_{\text {average }}$
$E_{k}=\frac{1}{2} m v^{2} \quad E_{p}=m g h$
$E_{T}=E_{P}+E_{k}$
$E_{k i}+E_{p i}+\sum W=E_{k f}+E_{p f}$
$E_{\text {in }}-E_{\text {out }}=\Delta E_{p}-\Delta E_{k}$
$E_{p}=\frac{1}{2} k x^{2} \quad$ Elastic PE

Trignometry

$$
\begin{array}{ll}
F_{x}=F \cos (\theta) & F_{y}=F \sin (\theta) \\
F=\sqrt{F_{x}^{2}+F_{y}^{2}} & \\
\tan \theta=\frac{F_{y}}{F_{x}} & \theta=\tan ^{-1}\left(\frac{F_{y}}{F_{x}}\right) \\
\sin \theta=\frac{F_{y}}{F} & \theta=\sin ^{-1}\left(\frac{F_{y}}{F}\right) \\
\cos \theta=\frac{F_{x}}{F} & \theta=\cos ^{-1}\left(\frac{F_{x}}{F}\right)
\end{array}
$$

Angular Motion/Circular Motion
$T=\frac{1}{f}$
$v=\frac{2 \pi r}{T}$
$a_{c}=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}$
$F_{c}=m a_{c}=\frac{m v^{2}}{r}=\frac{4 \pi^{2} m r}{T^{2}}$
Simple Harmonic Motion
Constants:
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
$1 \mathrm{hp}=745.7 \mathrm{~W}$
$\mathrm{m}_{E}=5.98 \times 10^{24} \mathrm{~kg}$
$r_{E}=6.37 \times 10^{6} \mathrm{~m}$
$\mathrm{K}=2.95 \times 10^{-19} \mathrm{~s}^{2} / \mathrm{m}^{3}$
$1 \mathrm{rev}=360^{\circ}=2 \pi \mathrm{rad}$

Newton's Three Laws of Motion:
$\sum \vec{F}=0$
Equilibrium: $\quad \sum \vec{F}_{x}=0$
$\sum \vec{F}_{y}=0$
$\sum \vec{F}=m \vec{a}$

$$
\begin{aligned}
& F_{g}=m g \\
& F_{f}=\mu F_{N}
\end{aligned}
$$

Newton's Law Of Universal Gravitation

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

$$
g=\frac{G M}{r^{2}}
$$

$\vec{F}=-k \vec{x}$
$\vec{a}=-\frac{k \vec{x}}{m}$
$f=\frac{1}{T}$
$v_{\max }=\frac{2 \pi A}{T}=A \sqrt{\frac{k}{m}}$
$a_{\max }=\frac{4 \pi^{2} A}{T^{2}}$
$T=2 \pi \sqrt{\frac{m}{k}} \quad$ spring-mass system
$\mathrm{T}=2 \pi \sqrt{\frac{l}{g}} \quad$ pendulum
$F_{R}=F_{\mathrm{g}} \sin (\theta)$

Waves:

$v=\lambda f$
$c=\lambda f$
$c=3.0 \times 10^{+8} \mathrm{~m} / \mathrm{s}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$f_{d}=\left(\frac{v_{w}}{v_{w} \mp v_{s}}\right) f_{s}$
Speed of sound $=330 \mathrm{~m} / \mathrm{s}$

$$
v=\sqrt{\frac{G M}{r}}=\sqrt{g r}
$$

$$
T^{2}=\frac{4 \pi^{2}}{G M} r^{3}
$$

$$
\frac{T_{a}^{2}}{r_{a}^{3}}=\frac{T_{b}^{2}}{r_{b}^{3}}=K
$$

We kept a copy of this document on our website for your convenience. Since this website was made by volunteers only, please support our sponsors: https://sharpseries.ca, who provide us with funding that allows us to continue to support your learning.

Coding with Scratch Workbooks
Find these books on amazon at:
Volume 1: https://www.amazon.com/dp/1719876800, Volume 2: https://www.amazon.com/dp/171998574X, Volume 3: https://www.amazon.com/dp/1720042837, Volume 4: https://www.amazon.com/dp/1728935458.

Find "Early Math Concepts" on amazon at: https://www.amazon.com/dp/B06X3TFLPM. Find "Chemistry for Kids" on amazon at: https://www.amazon.com/dp/B07BR5FH29.

Find these books at: https://www.amazon.com/dp/1795307005, https://www.amazon.com/dp/1795789166, and https://www.amazon.com/dp/1689213906.

